714. Best Time to Buy and Sell Stock with Transaction Fee (Medium)
Your are given an array of integersprices
, for which thei
-th element is the price of a given stock on dayi
; and a non-negative integerfee
representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
Buying at prices[0] = 1
Selling at prices[3] = 8
Buying at prices[4] = 4
Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
Note:
- 0 < prices.length <= 50000.
- 0 < prices[i] < 50000.
- 0 <= fee < 50000.
Solution 1: DP O(n); O(1) 九章
- 我们考虑最朴素的方法,对于每一天,如果当前有股票,考虑出售或者保留,如果没股票,考虑购买或者跳过,进行dfs搜索。每天都有两种操作,时间复杂度为O(2^n)
- 如何优化呢?我们用动态规划的思想来解决这个问题,考虑每一天同时维护两种状态:拥有股票(own)状态和已经售出股票(sell)状态。用own和sell分别保留这两种状态到目前为止所拥有的最大利润。 对于sell,用前一天own状态转移,比较卖出持有股是否能得到更多的利润,即sell = max(sell , own + price - fee), 而对于own , 我们考虑是否买新的股票更能赚钱(换言之,更优惠),own=max( own, sell-price)
- 初始化我们要把sell设为0表示最初是sell状态且没有profit,把own设为负无穷因为最初不存在该状态,我们不希望从这个状态进行转移
- 因为我们保存的都是最优状态,所以在买卖股票时候取max能保证最优性不变
- 最后直接返回sell即可
public int maxProfit(int[] prices, int fee) {
int sell = 0; //初始化,第一天不能卖,只能买,sell表示第i天卖股票后能获得的最大利润
int buy = -prices[0]; //buy表示第i天买股票后能获得的最大利润
for (int i = 1; i < prices.length; i++) {
sell = Math.max(sell, buy + prices[i] - fee); //如果卖,计算卖后能获得的最大利润
buy = Math.max(buy, sell - prices[i]); //如果买,计算买后能获得的最大利润
}
return sell; //最后得到的sell一定大于buy
}