146. LRU Cache (Hard)
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations:get
andput
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
Solution 1: HashMap + Doubly LinkedList O(1); O(n) n is capacity of LRU
/**
* HashMap + Doubly LinkedList
* Build a HashMap between Node’s key and Node, the size is capacity of LRU.
* Create a dummy head and tail in Doubly LinkedList to mark the boundary,
* so that we don't need to check the NULL node during the update.
* For operation get, get node from HashMap according to key and move node to head.
* For operation put, if key exists in HashMap, update the value of node. Otherwise,
* create a new node and add it to HashMap and Doubly LinkedList. If the size of HashMap reaches its capacity,
* remove the last node.
*/
class Node {
int key;
int val;
Node pre;
Node next;
Node(int key, int val) {
this.key = key;
this.val = val;
}
}
private void addNode(Node node) {
node.pre = head;
node.next = head.next;
head.next.pre = node; //不能和下面的交换
head.next = node;
}
private void removeNode(Node node) {
node.pre.next = node.next;
node.next.pre = node.pre;
}
private void moveToHead(Node node) {
removeNode(node);
addNode(node);
}
int capacity;
Map<Integer, Node> cache;
Node head;
Node tail;
public LRUCache(int capacity) {
this.capacity = capacity;
cache = new HashMap<>();
head = new Node(-1, -1);
tail = new Node(-1, -1);
head.next = tail;
tail.pre = head;
}
public int get(int key) {
if (!cache.containsKey(key)) {
return -1;
}
Node node = cache.get(key);
moveToHead(node);
return node.val;
}
public void put(int key, int value) {
if (cache.containsKey(key)) {
Node node = cache.get(key);
node.val = value;
moveToHead(node);
} else {
Node newNode = new Node(key, value);
addNode(newNode);
cache.put(key, newNode);
if (cache.size() > capacity) {
Node last = tail.pre;
removeNode(last);
cache.remove(last.key);
}
}
}