221. Maximal Square (Medium) Facebook Apple Airbnb
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
https://leetcode.com/articles/maximal-square/Solution 1: DP O(m * n); O(m * n)
/**
* DP O(mn);O(mn)
* state: dp(i,j) represents the side length of the maximum square whose bottom right corner is
* the cell at index (i,j) in the original matrix.
* dp(i, j)= min(dp(i−1, j), dp(i−1, j−1), dp(i, j−1))+1
*/
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int m = matrix.length;
int n = matrix[0].length;
int[][] dp = new int[m + 1][n + 1];
//不建议在这里初始化第0行和第0列,可以在下面的循环中一起赋值,大大节省代码量,但这样做记得要将数组各加一行一列。
int max = 0;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (matrix[i - 1][j - 1] == '1') {
dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i - 1][j]), dp[i][j - 1]) + 1;
max = Math.max(max, dp[i][j]);
}
}
}
return max * max;
}
Solution 2: DP O(m * n); O(n)
/**
* DP O(mn);O(m)
* As can be seen, each time when we update size[i][j], we only need size[i][j - 1], size[i - 1][j - 1]
* (at the previous left column) and size[i - 1][j] (at the current column).
* So we do not need to maintain the full m*n matrix. In fact, keeping two columns is enough.
* Now we have the following optimized solution.
*/
public int maximalSquareB(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int[] dp = new int[matrix[0].length + 1]; //n, not m
int pre = 0;
int max = 0;
for (int i = 1; i <= matrix.length; i++) {
for (int j = 1; j <= matrix[0].length; j++) {
int temp = dp[j];
if (matrix[i - 1][j - 1] == '1') {
dp[j] = Math.min(Math.min(dp[j - 1], pre), dp[j]) + 1;
max = Math.max(max, dp[j]);
} else {
dp[j] = 0;
}
pre = temp;
}
}
return max * max;
}
Follow Up:
1.让你找出 最大的square with chess pattern的边长,chess pattern:一个正方形中,条对角线全为0或者1,其余元素相反。
http://www.1point3acres.com/bbs/thread-309917-1-1.html
1 0 1 1 0
0 1 0 1 0
1 0 1 1 1
最大的chess pattern如下:
1 0 1
0 1 0
1 0 1
public int maximalSquareC(char[][] matrix) {
int n = matrix.length;
int m = matrix[0].length;
int[][] dp = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
dp[i][j] = 1;
}
}
int max = 0;
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
if (matrix[i][j] == 1) {
if (matrix[i - 1][j - 1] != 1 || matrix[i - 1][j] != 0 || matrix[i][j - 1] != 0) {
continue;
}
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
max = Math.max(max, dp[i][j]);
}
if (matrix[i][j] == 0) {
if (matrix[i - 1][j - 1] != 0 || matrix[i - 1][j] != 1 || matrix[i][j - 1] != 1) {
continue;
}
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
max = Math.max(max, dp[i][j]);
}
}
}
return max;
}