145. Binary Tree Postorder Traversal
Given a binary tree, return the _postorder _traversal of its nodes' values.
For example:
Given binary tree[1,null,2,3]
,
1
\
2
/
3
return[3,2,1]
.
Note:Recursive solution is trivial, could you do it iteratively?
Solution 1: Recursive, DFS O(n); O(h)
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) {
return res;
}
dfs(res, root);
return res;
}
private void dfs(List<Integer> res, TreeNode root) {
if (root == null) {
return;
}
dfs(res, root.left);
dfs(res, root.right);
res.add(root.val);
}
九章写法,不用helper函数
public List<Integer> postorderTraversal(TreeNode root) {
//虽然要用到ArrayList的addAll方法,但是List不用改成ArrayList
List<Integer> result = new ArrayList<>();
if (root == null) {
return result;
}
result.addAll(postorderTraversal(root.left));
result.addAll(postorderTraversal(root.right));
result.add(root.val);
return result;
}
Solution 2: Iterative + Stack O(n); O(h)
public List<Integer> postorderTraversal(TreeNode root) {
//since we need use addFirst() method, must use LinkedList
LinkedList<Integer> res = new LinkedList<>();
if (root == null) {
return res;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.empty()) {
TreeNode cur = stack.pop();
res.addFirst(cur.val);
if (cur.left != null) {
stack.push(cur.left);
}
if (cur.right != null) {
stack.push(cur.right);
}
}
return res;
}
九章写法,规范不投机
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) {
return result;
}
TreeNode prev = null; // previously traversed node
TreeNode curr = root;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.empty()) {
curr = stack.peek();
if (prev == null || prev.left == curr || prev.right == curr) { // traverse down the tree
if (curr.left != null) {
stack.push(curr.left);
} else if (curr.right != null) {
stack.push(curr.right);
}
} else if (curr.left == prev) { // traverse up the tree from the left
if (curr.right != null) {
stack.push(curr.right);
}
} else { // traverse up the tree from the right
result.add(curr.val);
stack.pop();
}
prev = curr;
}
return result;
}