311. Sparse Matrix Multiplication (Medium)
Given two sparse matrices A and B, return the result of AB.
You may assume that A's column number is equal to B's row number.
Example:
A = [
[ 1, 0, 0],
[-1, 0, 3]
]
B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]
| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |
Solution 1: Brute Force O(m * n * l); O(1)
public int[][] multiply(int[][] A, int[][] B) {//A: m * n; B: n * l
int[][] res = new int[A.length][B[0].length]; //m * l
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < A[0].length; j++) {
for (int k = 0; k < B[0].length; k++) {
res[i][k] += A[i][j] * B[j][k];
}
}
}
return res;
}
Solution 2: Pruning O(m * n * l); O(1)
那么我们来看结果矩阵中的某个元素C[i][j]是怎么来的,起始是A[i][0]*B[0][j] + A[i][1]*B[1][j] + ... + A[i][k]*B[k][j],那么为了不重复计算0乘0,我们首先遍历A数组,要确保A[i][k]不为0,才继续计算,然后我们遍历B矩阵的第k行,如果B[K][J]不为0,我们累加结果矩阵res[i][j] += A[i][k] * B[k][j]
/**
* Matrix multiplication is row in A multiply column in B.
* When implement, for A[i][j], multiply a row B[j][k], 0 <= k < nB.
* Then add result to res[i][k].
* Skip zeros since the matrix is sparse.
* <p>
* Loop through A from left to right, row by row.
* In each row, multiply the column value A[i][j] with each value in row j in B, B[j][k].
* Add it to res[i][k].
*/
public int[][] multiply(int[][] A, int[][] B) {
int mA = A.length, nA = A[0].length;
int nB = B[0].length;
int[][] res = new int[mA][nB];
for (int i = 0; i < mA; i++) {
for (int j = 0; j < nA; j++) {
if (A[i][j] == 0) { //res[i][k] += A[i][j] * B[j][k],A[i][j]为0,就没要必要往下计算了。
continue; // Skip zeros in A.
}
for (int k = 0; k < nB; k++) {
if (B[j][k] == 0) {
continue; // Skip zeros in B.
}
res[i][k] += A[i][j] * B[j][k];
}
}
}
return res;
}