SegmentTreeNode

// 节点区间定义
// [start, end] 代表节点的区间范围
// max 是节点在(start,end)区间上的最大值
// left , right 是当前节点区间划分之后的左右节点区间
public class SegmentTreeNode {
    public int start, end, max;
    public SegmentTreeNode left, right;
    public SegmentTreeNode(int start, int end, int max) {
        this.start = start;
        this.end = end;
        this.max = max
        this.left = this.right = null;
    }
}

线段树区间最大值维护

public SegmentTreeNode build(int[] A) {
    // write your code here
    return buildhelper(0, A.length - 1, A);
}

public SegmentTreeNode buildhelper(int left, int right, int[] A){
    if(left > right){
        return null;
    }
    SegmentTreeNode root = new SegmentTreeNode(left, right, A[left]); // 根据节点区间的左边界的序列值为节点赋初值
    if(left == right){
        return root; // 如果左边界和右边界相等,节点左边界的序列值就是线段树节点的接节点值
    }
    int mid = (left + right) / 2; // 划分当前区间的左右区间
    root.left = buildhelper(left, mid, A);
    root.right = buildhelper(mid + 1, right, A);
    root.max = Math.max(root.left.max, root.right.max); // 根据节点区间的左右区间的节点值得到当前节点的节点值
    return root;
}

举一反三:
如果需要区间的最小值:
root.min = Math.min(root.left.min, root.right.min);
如果需要区间的和:
root.sum = root.left.sum + root.right.sum;

线段树的区间查询

public int query(TreeNode root, int start, int end) {
    if (start <= root.start && root.end <= end) {
        // 如果查询区间在当前节点的区间之内,直接输出结果
        return root.max;
    }
    int mid = (root.start + root.end) / 2; // 将当前节点区间分割为左右2个区间的分割线
    int ans = Integer.MIN_VALUE; // 给结果赋初值
    if (mid >= start) {   // 如果查询区间和左边节点区间有交集,则寻找查询区间在左边区间上的最大值
        ans = Math.max(ans, query(root.left, start, end));
    }
    if (mid + 1 <= end) { // 如果查询区间和右边节点区间有交集,则寻找查询区间在右边区间上的最大值
        ans = Math.max(ans, query(root.right, start, end));
    }
    return ans; // 返回查询结果
}

线段树的单点更新

public void modify(SegmentTreeNode root, int index, int value) {
    // write your code here
    if(root.start == root.end && root.start == index) { // 找到被改动的叶子节点
        root.max = value; // 改变value值
        return ;
    }
    int mid = (root.start + root.end) / 2; // 将当前节点区间分割为2个区间的分割线
    if(index <= mid){ // 如果index在当前节点的左边
        modify(root.left, index, value); // 递归操作
        root.max = Math.max(root.right.max, root.left.max); // 可能对当前节点的影响
    }
    else {            // 如果index在当前节点的右边
        modify(root.right, index, value); // 递归操作
        root.max = Math.max(root.left.max, root.right.max); // 可能对当前节点的影响
    }
    return ;
}

通过前面问题的分析,我们对线段树问题可以做如下总结:

  1. 如果问题带有区间操作,或者可以转化成区间操作,可以尝试往线段树方向考虑

  2. 从面试官给的题目中抽象问题,将问题转化成一列区间操作,注意这步很关键

  3. 当我们分析出问题是一些列区间操作的时候

  4. 对区间的一个点的值进行修改

  5. 对区间的一段值进行统一的修改
  6. 询问区间的和
  7. 询问区间的最大值、最小值

    我们都可以采用线段树来解决这个问题

  8. 套用我们前面讲到的经典步骤和写法,即可在面试中完美的解决这些题目!

什么情况下,无法使用线段树?

如果我们删除或者增加区间中的元素,那么区间的大小将发生变化,此时是无法使用线段树解决这种问题的。

results matching ""

    No results matching ""