209. Minimum Size Subarray Sum (Medium)
Given an array of n positive integers and a positive integers, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array[2,3,1,2,4,3]
ands = 7
,
the subarray[4,3]
has the minimal length under the problem constraint.
More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(nlogn).
Solution 1: 同向Two Pointers O(n); O(1)
思路和76. Minimum Window Substring基本一致
public int minSubArrayLen(int s, int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int sum = 0; //important
int left = 0;
int min = Integer.MAX_VALUE;
//right pointer moves, left pointer stops until while loop starts
for (int right = 0; right < nums.length; right++) {
sum += nums[right];
while (sum >= s) { //right pointer stops, left pointer moves
min = Math.min(min, right - left + 1);
sum -= nums[left++];
}
}
return min == Integer.MAX_VALUE ? 0 : min;
}