85. Maximal Rectangle (Hard) Facebook
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 6.
public int maximalRectangle(char[][] matrix) {
/**
* idea: using [LC84 Largest Rectangle in Histogram]. For each row
* of the matrix, construct the histogram based on the current row
* and the previous histogram (up to the previous row), then compute
* the largest rectangle area using LC84.
*/
int m = matrix.length, n;
if (m == 0 || (n = matrix[0].length) == 0)
return 0;
int i, j, res = 0;
int[] heights = new int[n];
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (matrix[i][j] == '0')
heights[j] = 0;
else
heights[j] += 1;
}
res = Math.max(res, largestRectangleArea(heights));
}
return res;
}
public int largestRectangleArea(int[] heights) {
/**
* idea: scan and store if a[i-1]<=a[i] (increasing), then as long
* as a[i]<a[i-1], then we can compute the largest rectangle area
* with base a[j], for j<=i-1, and a[j]>a[i], which is a[j]*(i-j).
* And meanwhile, all these bars (a[j]'s) are already done, and thus
* are throwable (using pop() with a stack).
*
* We can use an array nLeftGeq[] of size n to simulate a stack.
* nLeftGeq[i] = the number of elements to the left of [i] having
* value greater than or equal to a[i] (including a[i] itself). It
* is also the index difference between [i] and the next index on
* the top of the stack.
*/
int n = heights.length;
if (n == 0)
return 0;
int[] nLeftGeq = new int[n]; // the number of elements to the left
nLeftGeq[0] = 1; // of [i] with value >= heights[i]
int preIdx = 0, res = 0; // preIdx=the index of stack.peek(), res=max area so far
for (int i = 1; i < n; i++) {
nLeftGeq[i] = 1;
// notice that preIdx = i - 1 = peek()
while (preIdx >= 0 && heights[i] < heights[preIdx]) {
res = Math.max(res, heights[preIdx] * (nLeftGeq[preIdx] + i - preIdx - 1));
nLeftGeq[i] += nLeftGeq[preIdx]; // pop()
preIdx = preIdx - nLeftGeq[preIdx]; // peek() current top
}
preIdx = i;
}
// compute the rest largest rectangle areas with (indices of) bases
// on stack
while (preIdx >= 0 && 0 < heights[preIdx]) {
res = Math.max(res, heights[preIdx] * (nLeftGeq[preIdx] + n - preIdx - 1));
preIdx = preIdx - nLeftGeq[preIdx]; // peek() current top
}
return res;
}