673. Number of Longest Increasing Subsequence (Medium)
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
Solution 1: DP O(n^2); O(1)
The idea is to use two arrays
len[n]
andcnt[n]
to record the maximum length of Increasing Subsequence and the coresponding number of these sequence which ends withnums[i]
, respectively. That is:
len[i]
: the length of the Longest Increasing Subsequence which ends withnums[i]
.cnt[i]
: the number of the Longest Increasing Subsequence which ends withnums[i]
.Then, the result is the sum of each
cnt[i]
while its correspondinglen[i]
is the maximum length.len[i] == len[j] + 1 means that you find another subsequence with the same length of LIS which ends with nums[i]. While len[i] > len[j] + 1 means that you find a subsequence, but its length is smaller compared to LIS which ends with nums[i].
public int findNumberOfLIS(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
//state
int[] f = new int[nums.length]; //用来记录第i个位置的最长长度
int[] ans = new int[nums.length]; //用来记录第i个位置的最长的个数
//init
f[0] = 1;
ans[0] = 1;
//func
int max_len = 1;
for (int i = 1; i < nums.length; ++i) {
//init
f[i] = 1;
ans[i] = 1;
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i] && f[j] + 1 > f[i]) {
//一个新的子序列
f[i] = f[j] + 1;
ans[i] = ans[j];
} else if (nums[j] < nums[i] && f[j] + 1 == f[i]) {
ans[i] += ans[j];
}
}
max_len = Math.max(f[i], max_len);
}
//ans
int res = 0;
for (int i = 0; i < nums.length; ++i) {
if (max_len == f[i]) {
res += ans[i];
}
}
return res;
}
另一种写法,计数放在for循环里面
public int findNumberOfLIS(int[] nums) {
int n = nums.length, res = 0, max_len = 0;
int[] len = new int[n], cnt = new int[n];
for(int i = 0; i<n; i++){
len[i] = cnt[i] = 1;
for(int j = 0; j <i ; j++){
if(nums[i] > nums[j]){
if(len[i] == len[j] + 1)cnt[i] += cnt[j];
if(len[i] < len[j] + 1){
len[i] = len[j] + 1;
cnt[i] = cnt[j];
}
}
}
if(max_len == len[i])res += cnt[i];
if(max_len < len[i]){
max_len = len[i];
res = cnt[i];
}
}
return res;
}
Follow Up:
1.求LIS的长度
public int lengthOfLIS(int[] nums) {
if(nums == null || nums.length == 0)
return 0;
int[] lis = new int[nums.length];
for(int i = 0; i < nums.length; i++){
lis[i] = 1;
for(int j = 0; j < i; j++){
if(nums[j] < nums[i])//符合计数条件
lis[i] = Math.max(lis[j] + 1, lis[i]);//只有当lis[j] + 1比当前lis[i]大才更新
}
}
int max_len = 0;
for(int num: lis){
max_len = Math.max(num, max_len);
}
return max_len;
}